想法是先算出抽到1張SSR次數的期望值\(k\),再以\(\displaystyle\frac{250}{k}\),求獲得SSR張數的期望值。
\(k=1p+2(1-p)p+3(1-p)^2p+…+99(1-p)^{98}p+100(1-p)^{99}=\displaystyle\frac{1-(1-p)^{99}}{p}-99(1-p)^{99}+100(1-p)^{99}\)
\(k=\displaystyle\frac{1-(1-p)^{100}}{p}\)
故所求的張數期望值為\(\displaystyle\frac{250p}{1-(1-p)^{100}}\)
[ 本帖最後由 Jimmy92888 於 2025-3-10 06:39 編輯 ]