題目:方程式 \(\sqrt[3]{x+7}−\sqrt[3]{x−7}=2\),則得實根中較大者為?
解答:
令 \(\displaystyle\alpha=\sqrt[3]{x+7}, \beta=\sqrt[3]{x-7}\),則
\(\displaystyle\left\{\begin{array}{ccc}\alpha-\beta&=&2\\\alpha^3-\beta^3&=&14\end{array}\right.\)
由 \(\displaystyle \alpha^3-\beta^3=\left(\alpha-\beta\right)^3+3\alpha\beta\left(\alpha-\beta\right)\)
可得 \(\alpha\cdot\beta =1\)
\(\displaystyle\Rightarrow \sqrt[3]{x+7}\cdot\sqrt[3]{x-7}=1\)
\(\Rightarrow x^2-49=1^3\)
\(x=\pm5\sqrt{2}.\)