發新話題
打印

112師大附中

引用:
原帖由 DavidGuo 於 2023-4-28 00:32 發表

應該8組,因為沒有給初始值,所以電腦會自己亂找。
ellipse用mathlab跑,找出4組,已經算好的了。
我用maple跑,只找出2組。
但初始值給的好,跑出比較多,這題應該可以全跑出來。
別的就不一定了,要看解是不是stable,這扯太遠了,詳 ...
上面看到DavidGuo教授這麼詳細的回答~要推一下.很有耐心的一位老師
要跟教授講一下,我是用Mathematica跑數值解,
不跑數值解算出來是一堆根號加減很醜的數據
然後剛剛又去檢驗一下,應該就只有那四組解喔
我唸書時系上應數的教授他們大致都用maple或mathlab軟體
印象中這兩套也很強,應該都可以跑出正確有幾組數值解
沒全部跑出來我很意外,是不是maple下指令的問題?

然後可以推一下Mathematica,早在20年前它就可以視覺化(跟手寫一樣)輸入指令
它還可以幫你預判多個未知數的不等式是否成立
求多個變數條件限制之下的極大,極小值,是它拿手的....
但比較麻煩的是,若要寫比較大的程式,後面要花心思去處理數據list的括號{ } 問題
這個需要有人教,最好是去上一學期的課程,不知道現DavidGuo教授您們系上有在開這種課程?
(當時教我的教授,是一位美國波音公司退休的工程師,非常的厲害)
題外話,Mathematica雖然很強大,但是遇到一些教甄題,還是會有算不出來的時候(但比例不高,機率大約1%~10%內)
例如特殊求極限,黎曼和等(早期版本求黎曼和極值有點弱,現在版本改善很多)
需要經過化簡才有辦法算出來,這顯示人腦還是比較聰明~~

TOP

引用:
原帖由 Ellipse 於 2023-4-28 08:49 發表
上面看到DavidGuo教授這麼詳細的回答~要推一下.很有耐心的一位老師
頭已經洗了,只好把它洗完。
與大家討論,我自己也學了不少。
引用:
要跟教授講一下,我是用Mathematica跑數值解,
不跑數值解算出來是一堆根號加減很醜的數據
然後剛剛又去檢驗一下,應該就只有那四組解喔
是喔,這就有點怪了,要再想想,
因為從解的8種分類,答案應該都不同。
引用:
我唸書時系上應數的教授他們大致都用maple或mathlab軟體
印象中這兩套也很強,應該都可以跑出正確有幾組數值解
沒全部跑出來我很意外,是不是maple下指令的問題?
可能我只下fsolve,要再找別的指令…
引用:
但比較麻煩的是,若要寫比較大的程式,後面要花心思去處理數據list的括號{ } 問題
這個需要有人教,最好是去上一學期的課程,不知道現DavidGuo教授您們系上有在開這種課程?
我們系是沒有,只有單純數值分析的課而已。
一個數學軟體裡,除了基本指令外,每個package都用到超多論文的…
除非很熟,不然很難上這種課。

TOP

引用:
原帖由 DavidGuo 於 2023-4-28 09:44 發表

我們系是沒有,只有單純數值分析的課而已。
一個數學 ...
現在都在推GGB軟體,您們系上應該會開課吧?
還有好奇問您們會開這種 教甄解題課程 嗎?

TOP

引用:
原帖由 Ellipse 於 2023-4-28 10:08 發表
現在都在推GGB軟體,您們系上應該會開課吧?
還有好奇問您們會開這種 教甄解題課程 嗎?
GGB沒有,但幾何的老師會使用。
另有教學解題的課程,但主要是資優學程的,不是專為教甄。
教甄的話主要是教試教的部份,這部份比較難,很多成績很好的學生,不會教人,講什麼都覺得trvial。
筆試題目,靠學生自己練習即可,他們會自組小組練習、分享、討論。

TOP

回覆 28# Superman 的帖子

對! 嚴格來說{0<= X<= 13, X 為整數}, 只是X本來就是整數,也一定>=0

TOP

第五題的問題

引用:
原帖由 Ellipse 於 2023-4-28 08:49 發表
要跟教授講一下,我是用Mathematica跑數值解,
不跑數值解算出來是一堆根號加減很醜的數據
然後剛剛又去檢驗一下,應該就只有那四組解喔
我知道問題出在哪裡了…
35樓的解法,也有漏洞,
第一、
不只8個Cases,其中(2)(3)(4)(6)(7)(8)應該都還有另外的Case
以Case (2)來說
還會有|x|比較短一點的情況,亦即A點在三角形OBC中的情況,
此時\(-\triangle OAB+\triangle OBC-\triangle OCA=3\sqrt{\frac{11}2}=\frac12(-|x|y+\frac{yz}2-\frac{\sqrt{3}|x|z}2)=\frac12(xy+\frac{yz}2+\frac{\sqrt{3}xz}2)\)
推得\(2xy+yz+\sqrt{3}xz=6\sqrt{22}\)
Case(3)(4)(6)(7)(8)也都一樣,恰好正負相反,所以答案還是\(\pm 6\sqrt{22}\)
這樣實在太多Cases了,還是像40樓一樣,用有向面積一次解決比較快。

第二、
問題出在題目說x,y,z是實數,但這14個cases我們都沒把x,y,z真的解出來,他們其實有可能是複數解,所以\(+6\sqrt{22}\)與\(-6\sqrt{22}\),還須要各至再找出一組實數解才行。
當x,y,z都正時,可以確定解都是實數,且答案是\(+6\sqrt{22}\),至於\(-6\sqrt{22}\)這個答案,還要真的找一組「實數」解出來才行,這就不容易了…

要不就是題目不要說x,y,z是實數,允許複數,那答案是\(\pm 6\sqrt{22}\),
要不就是題目改成x,y,z都正,那答案是\(+6\sqrt{22}\)
不然原題「x,y,z是實數」,用21樓電腦跑出的結果說明,答案是\(\pm 6\sqrt{22}\)沒錯,但\(-6\sqrt{22}\)這個用人工不好確定。

TOP

回覆 46# DavidGuo 的帖子

我這次沒用數值解去跑
直接讓它算出精準的答案

剛上網看,學校並沒有更正這題答案

附件

1682693130593.jpg (520.82 KB)

2023-4-28 22:47

1682693130593.jpg

TOP

想請問第10題

TOP

回覆 48# a5385928 的帖子

第 10 題
在\(\Delta ABC\)的邊\(\overline{AB}\)與\(\overline{AC}\)的外側分別作正三角形\(\Delta ABD\)與\(\Delta ACE\),已知\(\overline{AC}=1\)且\(\overline{DE}=2\),則\(\Delta ABC\)面積的最大值為   
[提示]
110 高中數學能力競賽決賽 口試題
https://math.pro/db/thread-3612-1-2.html

TOP

請教第9題
如何處理mod 125

TOP

發新話題