兩根號的極值問題
110.2.20補充
若\(-3\le x\le 1\),試求\(f(x)=\sqrt{x+3}+\sqrt{1-x}\)的值域。
(109嘉義高中代理,
https://math.pro/db/thread-3369-1-1.html)
設\(F_1(-4,0),F_2(4,0)\)為橢圓\(\displaystyle \frac{x^2}{25}+\frac{y^2}{9}=1\)的兩焦點,且\(A(2,2)\)在橢圓的內部。若\(P\)為橢圓上任意一點,證明\(10-2\sqrt{2}\le \overline{PA}+\overline{PF_1}\le 10+2\sqrt{2}\)。
(95高中數學能力競賽 嘉義區複賽試題一)
113.7.19補充
已知\(A(4,0),B(2,2)\)是橢圓\(\displaystyle \frac{x^2}{25}+\frac{y^2}{9}=1\)內的點,若\(M\)為橢圓上動點,則\(\overline{MA}+\overline{MB}\)的最大值為
。
(113嘉科實中雙語部,
https://math.pro/db/thread-3895-1-1.html)
求函數\(f(x)=\sqrt{2x^2-6x+4}+\sqrt{x^2-3x}\)的最小值,及此時的\(x\)之值。
(建中通訊解題第132期)
已知\(-1\le x \le 1\),\(\displaystyle y=\sqrt{4+\sqrt{3+\sqrt{1+x}}}+\sqrt{4+\sqrt{3+\sqrt{1-x}}}\),求\(y\)的最大值在哪兩個連續整數之間?
(建中通訊解題第146期)
設\(x,y\)為兩實數且滿足\(\sqrt{x+3}+\sqrt{y-7}=6\),若\(2x+y\)的最大值為\(M\),最小值為\(m\),求數對\(M,m\)。
(建中通訊解題第154期)
111.1.31
設\(x\in R\),求\(f(x)=\sqrt{x^4-3x^2-6x+13}-\sqrt{x^4-x^2+1}\)的最大值為
。
(104全國高中聯招,
https://math.pro/db/thread-2252-1-1.html)
113.5.9補充
已知函數\(f(x)=\sqrt{x^4-x^2-6x+10}-\sqrt{x^4-3x^2+4}\),則\(f(x)\)的最大值為
。
(113景美女中,
https://math.pro/db/thread-3858-1-1.html)
111.12.17
若\(x>0\),試求函數\(f(x)=\sqrt{x^2+(log_2x)^2}+\sqrt{(x-5)^2+(log_2x-1)^2}\)的最小值?
(111高雄市高中聯招,
https://math.pro/db/thread-3646-1-1.html)
112.4.24
設\(f(x)=\sqrt{10x-x^2}-\sqrt{16x-x^2-60}\),求\(f(x)\)的最大值。
(112台南女中,
https://math.pro/db/thread-3730-1-1.html)
112.4.25
已知\(\vec{a}=(6,8)\),\(\vec{b}=(\sqrt{1-sin\theta},\sqrt{sin\theta})\),其中\(0\le \theta \le \pi\),則\(\vec{a}\cdot \vec{b}\)的最大值為
。
(112台北市高中聯招,
https://math.pro/db/thread-3729-1-1.html)
113.5.16
設\(t\)是任意實數,試求\(y=\sqrt{4+4sint}+\sqrt{2+2cost}\)的最大值為何?
(112竹東高中,
https://math.pro/db/viewthread.php?tid=3758&page=1#pid25218)
112.6.6
空間中,\(A(-2,8,0)\)、\(B(3,1,4)\),\(P\)為\(y\)軸上一點,則讓\(\overline{PA}+\overline{PB}\)有最小值的\(P\)坐標為
。
(112新竹女中代理,
https://math.pro/db/thread-3756-1-1.html)
112.6.10
空間中兩點\(A(8,0,12),B(7,13,13)\),若\(P\)點在直線\(\displaystyle x+1=\frac{y}{2}=\frac{3-z}{-2}\)上,則\(\overline{PA}+\overline{PB}\)最小值為何?此時的\(P\)點坐標為何?
(112竹東高中,
https://math.pro/db/thread-3758-1-1.html)
113.6.2
設\(A(7,6,3)\)、\(B(5,-1,2)\)與一直線\(L\):\(\displaystyle \frac{x-1}{2}=\frac{y}{1}=\frac{z-3}{-2}\),若在\(L\)上任取一點\(P\),使得\(\overline{PA}+\overline{PB}\)有最小值,求\(P\)點坐標
。
(113嘉義高中,
https://math.pro/db/thread-3851-1-1.html)
113.7.6
已知空間中兩點\(A(1,2,3)\),\(B(2,1,-1)\),動點\(P(t,2t+1,2t),t\)為實數,若\(\overline{PA}+\overline{PB}\)有最小值時,此時\(t=\)
(113彰化女中代理,
https://math.pro/db/thread-3898-1-1.html)
112.6.12
\(\sqrt{2^x(2^x-8)+x(x-2)+17}+\sqrt{2^x(2^x-2)+x(x-10)+26}\)的最小值為何?
(A)5 (B)6 (C)7 (D)8
(112新北市國中聯招,
https://math.pro/db/thread-3760-1-1.html)
112.8.18
設\(x,y \in R\),則\(\sqrt{(x-4)^2+(y-1)^2+(x+y-2)^2}+\sqrt{(x-4)^2+(y-2)^2+(x+y)^2}\)的最小值為
。
(112文華高中代理,
https://math.pro/db/thread-3764-1-1.html)
113.3.17
已知二次函數\(y=x^2+2x-3\)的圖形與\(x\)軸交於點\(A(x_1,0)\)、\(B(x_2,0)\),其中\(x_1>x_2\)。設\(Q(2,y_0)\)為\(y=x^2+2x-3\)上的一點,在此二次函數的對稱軸上找一點\(P\),使得\(\overline{PA}+\overline{PQ}\)的值最小,則\(P\)點坐標為何?
(113嘉科實中國中部,
https://math.pro/db/thread-3820-1-1.html)
113.4.12
空間中,\(A\)點坐標為\((-2,8,0)\),\(B\)點坐標為\((3,1,4)\),\(P\)點為\(y\)軸上一點,當\(\overline{PA}+\overline{PB}\)有最小值時,\(P\)點坐標為何?
【以下為學生小沂的解法】
因為\(\overline{PA}\ge 0\),\(\overline{PB}\ge 0\),故由算幾不等式可得\(\displaystyle \frac{\overline{PA}+\overline{PB}}{2}\ge \sqrt{\overline{PA}\times \overline{PB}}\)
等式成立時,\(\overline{PA}+\overline{PB}\)有最小值且發生在\(\overline{PA}=\overline{PB}\)時。
因為\(P\)點為\(y\)軸上一點,假設\(P\)點坐標為\((0,y,0)\),\(\overline{PA}+\overline{PB}\Rightarrow \sqrt{2^2+(y-8)^2}=\sqrt{3^2+(y-1)^2+4^2}\Rightarrow y=3\)
因此,\(P\)點坐標為\((0,3,0)\)。
1.請問:小沂的解法是對的嗎?若老師覺得此學生的解法錯誤,要如何協助學生釐清錯誤的迷思呢?
2.如果您正在教授「高一」的學生,想避免學生有類似上述的錯誤方式,您要如何設計一道數學題目並給出類似上面的錯誤解法,讓學生偵錯呢?透過此道數學題目,要如何協助學生釐清錯誤的迷思呢?
(113新竹女中,
https://math.pro/db/thread-3829-1-1.html)
113.4.21補充
函數\(f(x)=\sqrt{2x^2-6x+9}+\sqrt{2x^2-16x+(log_3x)^2-2x\cdot log_3x+4\cdot log_3x+40}\)的最小值為
。
(113文華高中,
https://math.pro/db/thread-3836-1-1.html)
113.5.14補充
若函數\(f(x)=\sqrt{24-4x}+\sqrt{5x+15}\)(其中\(-3\le x \le6\))的最大值為\(M\),最小值\(m\),則數對\((M,m)=\)
。
(113南湖高中,
https://math.pro/db/viewthread.php?tid=3867&page=1#pid26156)
--------------------------------
橢圓準線相關問題
坐標平面上有兩定點\(A(-1,0)\)、\(B(1,1)\),\(P\)為橢圓\(\displaystyle \frac{x^2}{4}+\frac{y^2}{3}=1\)上一點,則\(2\overline{PA}+\overline{PB}\)的最小值為
。
(113文華高中,連結有解答
https://math.pro/db/viewthread.php?tid=3836&page=3#pid25859)
在坐標平面上,若\(\Gamma\):\(\displaystyle \frac{x^2}{225}+\frac{y^2}{144}=1\)、\(A(9,0)\)、\(B(7,7)\),且動點\(P\)在\(\Gamma\)上,試求:\(5\overline{PA}+3\overline{PB}\)的最小值為。
(113嘉科實中,連結有解答
https://math.pro/db/viewthread.php?tid=3842&page=1#pid26247)
在坐標平面上,\(A\)點坐標為\((8,0)\),\(B\)點坐標為\((0,6)\),\(P\)為圓:\(x^2+y^2=16\)上的動點,求\(3\overline{PA}+2\overline{PB}\)的最小值=
(113彰化女中代理,
https://math.pro/db/thread-3898-1-1.html)