發新話題
打印

111彰化女中

回覆 10# koeagle 的帖子

填充9彰女公告送分了

TOP

回覆 8# peter0210 的帖子

填充第 5 題
您還少了 A8B3

TOP

回覆 10# koeagle 的帖子

填充第 4 題
\(n\)是不超過1000的正整數,且\(\displaystyle \frac{n+4}{n^2+7}\)為最簡分數,問\(n\)有多少個可能值?   
[解答]
(n + 4) / (n^2 + 7)
= (n + 4) / (n^2 - 16 + 23)
= (n + 4) / [(n + 4)(n - 4) + 23]
當 n + 4 是 23 的倍數,它就可以約分

5 ~ 1004 有 43 個 23 的倍數

所求 = 1000 - 43 = 957

TOP

回覆 13# thepiano 的帖子

謝謝 thepiano 老師!

TOP

11. 考場沒做出來,回去後才想到....

OPAB是一個圓內接四邊形,假設正方形的邊長為\(2a\)
則有\(\displaystyle \overline{OB}=\sqrt{2}a,\overline{AB}=2a, \overline{PB}=\sqrt{4a^2-8}\)

由托勒密定理得到\(\displaystyle a^2=\frac{29}{2}\)

則所求\(\displaystyle \overline{PB}=\sqrt{58-8}=5\sqrt{2}\)

TOP

15.
空間中有一個邊長為6的正四面體\(OABC\),平面\(ABC\)上一點\(P\)滿足\(\displaystyle \vec{OP}=\frac{1}{2}\vec{OA}+\frac{1}{3}\vec{OB}+\frac{1}{6}\vec{OC}\)。若通過\(P\)點且相異於平面\(ABC\)的另一平面分別與射線\(\overline{OA}\)、\(\overline{OB}\)、\(\overline{OC}\)交於\(A'\)、\(B'\)、\(C'\),求此平面與\(\overline{OA}\)、\(\overline{OB}\)、\(\overline{OC}\)三射線圍出四面體\(OA'B'C'\)中體積的最小值為   
[解答]
第一眼被嚇到,但後來發現還好

假設平面E交\(\displaystyle \overline{OA},\overline{OB},\overline{OC}\)於\(A',B',C\)

且設\(\displaystyle \overline{OA'}=x\overline{OA} , \overline{OB'}=y\overline{OB} , \overline{OC'}=z\overline{OC}\)

由P點落在\(A'B'C'\)平面上可知\(\displaystyle \frac{3}{x}+\frac{2}{y}+\frac{1}{z}=6\)
求\(xyz\)的最小值,由算幾不等式易求得\(xyz \geq \displaystyle \frac{3}{4}\)

因此所求體積\(V'\)為原本的體積\(V\)的\(\displaystyle \frac{3}{4}\)倍
得\(\displaystyle V'=\frac{3}{4}\cdot 18\sqrt{2}=\frac{27\sqrt{2}}{2}\)


剛剛發現的偷吃步方法

坐標化求P點,在\(\displaystyle \overline{OA},\overline{OB},\overline{OC}\)取\(A',B',C'\)
讓\(\displaystyle \triangle{A'B'C'}\)的重心為P
此時圍出的四面體\(O-A'B'C'\)即為所求的最小體積四面體

TOP

想請教一下計算2 完全沒想法

TOP

引用:
原帖由 PDEMAN 於 2022-6-4 12:22 發表
\(OP_1=OP_2=\cdots=OP_{2022}=1\)
再利用柯西
\(((a_1)^2+\cdots+(a_{2022})^2)(2022)\geq (a_1+\cdots+a_{2022})^2\)
推得 \(a_1+\cdots+a_{2022}\leq 1\)
最後可得所求是1
想問這裡推得 \(OP_1=OP_2=\cdots=OP_{2022}=1\) 會不會太快了?
畢竟題目是說\(P_1,P_2,\cdots\)在圓盤上
不過主軸是用柯西沒錯

先由\(OP_1,OP_2,\cdots,OP_{2022}\leq1\)
得知
\(a_1\cdot 1+a_2 \cdot 1+\cdots+a_{2022}\cdot 1 \geq a_1\cdot OP_1+a_2 \cdot OP_2+\cdots+a_{2022}\cdot OP_{2022} \geq 1\)
再由柯西不等式所得結果,搭配上式
得到\(1\leq a_1+\cdots+a_{2022}\leq 1\)
所以得到1

另外提一下計算第一題,最好不要使用估算法
要用估算法,誤差要縮很小,搭配常用對數或許可以,
但用計算機試了一下,只能用
\(e^\pi>2.7^{3.1415}>3.15^{2.7183}>\pi^e\)
得到正確結果
不過用\(\log 2=0.3010,\log 3=0.4771\)之類的去估算,會得到
\(3.1415 \log 2.7 - 2.7183 \log 3.15\simeq 0.0004\)
差距太小,表示還要花時間去說明你的估算誤差,沒有超過0.0004
所以下次看到,就真的不要用估算的
(或者有高手可以提供估算的做法)

TOP

填充14

提供自己的想法給大家參考,不知道有沒有更好的寫法

[ 本帖最後由 yosong 於 2022-6-4 21:13 編輯 ]

附件

111彰化女中填充14.jpg (57.82 KB)

2022-6-4 20:28

111彰化女中填充14.jpg

TOP

話說第13題的答案,是不是還可以多一個\(a^2\)呢?
畢竟它的橢圓方程式是給
\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)
沒有其它資訊判斷橢圓的長軸走向等等

教甄寫到這樣的題目,都會很猶豫要不要直接預設a>b
有時候怕預設了結果寫的答案不完整沒分數
不設又怕出題者覺得a>b理所當然

來寫個試題疑義好了

TOP

發新話題