發新話題
打印

110臺中一中

回復 10# son249 的帖子

令橢圓參數式,到(2,0)距離,配方即可

TOP

回復 10# son249 的帖子

軌跡是橢圓 x^2 / 16 + y^2 / 36 = 1
易看出最小值是 2 沒錯

TOP

填充8

8.
由樣本空間\(S\)得到兩個隨機變數\(X\)、\(Y\),已知\(E(x)=1\)、\(E(X^2)=3\)、\(E(Y)=2\)、\(E(Y^2)=5\)、\(E(XY)=3\),則\(Var(3X-2Y+7)=\)   
[解答]
解法參考

附件

填充8.jpg (51.88 KB)

2021-4-26 20:47

填充8.jpg

TOP

填充9
已知四個實數\(a,b,c,d\),滿足\(abcd=-5\),\(a(b-1)(c-1)(d-1)=11\),\(a(b-2)(c-2)(d-2)=33\),\(a(b-3)(c-3)(d-3)=73\),則\(a(b+1)(c+1)(d+1)\)的值為   
[解答]

附件

1619442553911.jpg (22.02 KB)

2021-4-26 21:10

1619442553911.jpg

TOP

想請教填充10

TOP

回復 15# matsunaga2034 的帖子

10.
已知三次函數\(f(x)=ax^3+bx^2+cx+d\)(其中\(a,b,c,d\in R\)且\(a\ne 0\)),若函數\(f(x)\)的對稱中心為\((1,2)\),且局部看函數\(y=f(x)\)的圖形在\(x=2\)附近近似於一條斜率為\(-4\)的直線,則\(\displaystyle \Bigg\vert\;\frac{b^2+c^2+d^2}{a}\Bigg\vert\;\)的最小值為   
[解答]
由三次函數對稱點性質可得
-b/3a=1 得 b=-3a
又f'(2)=12a+4b+c=-4
可以推得c=-4,d=6+2a
將 b=-3a,c=-4,d=6+2a代入題目
再用算幾就可以處理了

看來豈是尋常色   濃淡由他冰雪中

TOP

請問填充6該怎麼作答? 謝謝。

TOP

回復 17# happysad 的帖子

6.
串生創造一個數列\(\langle\;a_n\rangle\;\),若\(a_1=x\)、\(a_2=y\)(\(x,y\)為正整數),且對所有正整數\(n\)皆滿足\(a_{n+2}=a_{n+1}+a_n\)。已知創造出的數列\(\langle\;a_n\rangle\;\)中有一項是115,則\(x+y\)的最小值為   
[解答]
Fibonacci
\(x,y,x+y,x+2y,2x+3y,3x+5y,5x+8y,8x+13y,13x+21y,21x+34y,34x+55y\)

\(x,y\)為正整數,不難從後面找回來,第一個找到的\(x+y\)最小
\(x=4,y=3\)時\(13x+21y=115\)

TOP

計算1
已知\(A\)、\(B\)兩點均在圓\(\Gamma\):\((x+1)^2+(y-4)^2=50\)上,其中\(A\)坐標為\((-6,9)\),若\(\vec{AB}\)在直線\(L\):\(3x+4y+32=0\)的正射影長為12,\(|\;\vec{AB}|\;\)的最大值。
[解答]
\(B\)可能有兩點,\(AB\)線段最大為\(A\)至\(B2\)的距離\(=6\sqrt{5}\)

附件

未命名.png (95.53 KB)

2021-4-27 13:11

未命名.png

TOP

感謝 ycj 大大的回覆~~~

TOP

發新話題