回復 62# zidanesquall 的帖子
填充8.
實係數三次多項方程式 \( \Rightarrow \) 至少一實根,實根僅能為 1 或 \( -1 \)
若三根皆實根,則三根之和 = 3, 1, \( -1 \), 或 \( -3 \),與已知條件矛盾,故三根為一實二虛。
令此兩虛根為 \( a \pm bi \),其中 \( a,b \) 為實數,因各根的絕對值皆為 1,因此 \( a^2 + b^2 =1\) 且 \( |a| \le 1 \)。
若實根為 1,則三根之和 \( 1+a+a = -2 \Rightarrow a = - \frac32 \) ,而得矛盾,
故實根為 \( -1 \), \( a = -\frac12 \),兩虛根為 \( - \frac12 \pm \frac{\sqrt{3}}{2}i \)
\( x^{3}+ax^{2}+bx+c=(x+1)(x^{2}+x+1)=x^{3}+2x^{2}+2x+1 \)
\( \Rightarrow (a,b,c) =(2,2,1) \)