第 5 題,也算常見的考古題了
1. 設過原點 \( (0,0) \) 有三條相異直線與 \( f(x)=x^{3}+kx^{2}+1 \) 相切,則實數 \( k \) 值的範圍為 __________。(100楊梅高中、99台中二中、102復興高中)
2. 三次曲線\(y=x^3+ax^2+1\),若通過原點可做出此曲線的三條相異切線,求實數\(a\)的範圍為。(107中科實中國中部)
3. 三次曲線 \( y=x^{3}+ax^{2}+x+1 \),若由原點可作三條相異之切線,試求實數 \( a \) 的範圍。(101中科實中、96台中一中)
瑋岳老師的解答:
https://math.pro/db/viewthread.php?tid=1318&page=5#pid5091
4. \( a\in\mathbb{R} \),過 \( P(a,2) \) 作 \( y=f(x)=x^{3}-3x^{2}+2 \) 的切線,若所作的切線恰有一條,求 \( a \) 的範圍。(97大里高中)
5. 三次曲線 \( y=x^{3}+kx^{2}+x+1 \),若由原點恰可作兩條切線,試求實數 \( k \) 範圍。(102松山家商)
6. 已知函數圖形 \( \Gamma:\,f(x)=x^{3}-x \),而點 \( P(a,0) \) 是圖形外一點,若過 \( P \) 恰可作相異三條的切線,則 \( a \) 的範圍為 \( \underline{\qquad\qquad} \)。(102北門高中)
7. 平面上動點 \( P(a,b) \),已知通過點 P 對函數 \( f(x) = -x^3 + 2x + 3 \) 圖形可做三條切線,找出符合的關係式。(106高雄女中)