填充 6.
每一個小正立方體有六個面,組合大立方體時,
小正立方體有三個面在大立方體的面上,有三個面在內部。
依題意之染色,有四個小正立方體有一面染色,故所求 = \( (\frac{3}{6})^{4}=\frac{1}{16} \)
F. 先考慮在 \( z = k \) (\( -1<k<1 \)) 的截面上,三個球被截出一樣大的圓,其半徑為 \( r=\sqrt{1-k^{2}} \)
三個圓隨著球移體,所經區域為一長條介在兩條距離為 \( 2r \) 平行直線,此兩直線與原本的 \( L_i \) 平行。共同區域的邊界所在直線為 \( y=\pm r \), \( \sqrt{3} x \pm y = \pm 2r \) (z=k 截面上的六條直線)
故共同區域為一正六邊形,其邊長為 \( \frac{2}{\sqrt{3}}r \),其面積為 \( \frac{\sqrt{3}}{4}\cdot6\cdot (\frac{2}{\sqrt{3}}r)^2 = 2\sqrt{3} r^2 \)
故所求體積為 \(\displaystyle 2\sqrt{3}\int_{-1}^{1}(1-z^{2})dz=2\sqrt{3}(z-\frac{z^{3}}{3})\Big|_{-1}^{1}=\frac{8}{3}\sqrt{3} \)
112.12.16新增