13 12
發新話題
打印

112新北市高中聯招

第10題不用ratio test

雖然root test強於ratio test,但因為每次都ratio test比較好算,而且在taylor series時,也都用ratio test在判斷收斂區間,所以還是不能捨掉ratio test。
不過若硬要使用root test來取代ratio test的題目的話,我查了一下,要下面幾個lemma
1) \(\displaystyle\lim_{n\to\infty}\sqrt[n]{n!}=\infty\)
2) \(\displaystyle\lim_{n\to\infty}\frac{\sqrt[n]{n!}}{n}=\frac1e\)
3) \(\displaystyle\lim_{n\to\infty}\sqrt[n]{\frac{(kn)!}{(n!)^k}}=k^k, k\in\mathbb{N}\)

此題剛好是3) ,所以…\(3^3=27\)

或是直接使用stirling approximation,在\(n\)很大時
\(\displaystyle n!=\sqrt{2\pi n}\left(\frac ne\right)^n\)
代入即可。

出題教授可能剛好有教到這個,然後就直接拿來考了…
雖然說教甄沒有範圍,但感覺不怎麼適合。

[ 本帖最後由 DavidGuo 於 2023-5-8 10:59 編輯 ]

TOP

引用:
原帖由 Ellipse 於 2023-5-8 10:31 發表

這內容有提到的關鍵正是
"柯西第二極限定理"

然後我覺得這跟ratio test ,root test沒太大關係?
ratio test 只是在測驗 sigma {a_n} 這級數是否收斂
利用L=limit a_(n+1)/a_n 來看
但這題L=27 >1 ,ratio test 說這 ...
可以參考Rudin高微的68頁Thm 3.37 (這次換一本比較常見的)
定理本身跟root test與ratio test沒有關係,只是通常都會聯想到。

以下截圖自課本:

其中最後提到的Thm 3.20(b)是這個


若不習慣高微的證法,也有比較直覺的方式


檔案來源在附件中。

附件

0025570x33450.di021200.02p0190s.pdf (38.98 KB)

2023-5-8 11:55, 下載次數: 2128

TOP

引用:
原帖由 5pn3gp6 於 2023-5-15 10:03 發表
填充10各位老師的手法太神了
不過我還是提供一個方法試試,因為老師的手法我不覺得我有搞懂......
給大家參考
可以先看到\(\displaystyle (3n)!=\left(\prod^n_{k=1}3k\right)\left(\prod^n_{k=1}(3k-1)\right)\left ...
能想到這樣的方法…很不錯…

不過…在使用算幾不等式時…是有限項,然後最後單只把右式的n驅近無限大,之後大於等3
這樣不好說明3是最大下界,搞不好是4或5或6,也都大於等於3…

或許可以換成,用夾擠的方式來說明,先在有限項使用不等式,然後大家一起n驅近無限大…
看看這樣可不可行。

TOP

 13 12
發新話題