發新話題
打印

111桃園高中

計算2,已知 abc=1, a,b,c 皆正,求證:

1/a^3(b+c) + 1/b^3(a+c) + 1/c^3(a+b) >= (1/a+1/b+1/c)/2

我的作法:
b^2c^2/a(b+c) + a^2c^2/b(a+c) + a^2b^2/c(a+b) >=(科西) (ab+bc+ab)^2/(2(ab+bc+ac)) =(ab+bc+ac)/2 = (1/a+1/b+1/c)/2

計算4
令 P(x^2023) +x^3Q(x^2023) + x^5R(x^2023) = (1+x+...+x^2022)S(x)
求證:S(x) 有 (x-1) 之因式

我的作法:
令 w = cos pi/2023 + i sin pi/2022
x=w, x=w^2 ,.., x=w^2022 帶入相加,可得 P(1)=0
左右同除x^3, 再一次用 x=w, x=w^2 ,.., x=w^2022 帶入相加,可得 Q(1)=0,
同理R(1)=0,因此S(1)=0,得證。

TOP

回覆 26# nnkuokuo 的帖子

全部相加
再利用 1+w+w^2+...+w^2023=1

TOP

發新話題