發新話題
打印

111桃園高中

一、填充5
設地球為空間中一球體。今以地球球心為原點,地球半徑為單位長,建立一個直角坐標系。若地球表面上有甲、乙、丙三地,甲、乙的坐標分別為\((1,0,0)\)及\(\displaystyle (0,\frac{1}{2},\frac{\sqrt{3}}{2})\),而丙地位於甲乙兩地之間最短的路徑上,且甲丙路徑長為乙丙路徑長的2倍,求丙地的坐標   
[解答]

附件

20220427_121531.jpg (59.23 KB)

2022-4-27 12:17

20220427_121531.jpg

TOP

填充8
已知數列\(\langle a_n \rangle\)滿足\(a_1=1,a_2=1,a_3=2,a_{n+3}=5a_{n+2}-7a_{n+1}+3a_n(\forall n \ge 1)\),求\(a_{50}\)為幾位數   
[解答]

附件

20220427_142424.jpg (88 KB)

2022-4-27 14:27

20220427_142424.jpg

TOP

填13.
三角形\(ABC\)中,三線段\(\overline{AD}\)、\(\overline{BE}\)、\(\overline{CF}\)有一個共同交點\(O\),若\(\overline{OD}=\overline{OE}=\overline{OF}=4\)且\(\overline{OA}+\overline{OB}+\overline{OC}=37\),請求出\(\overline{OA}\times \overline{OB}\times \overline{OC}\)之值   
[解答]

附件

20220427_215218.jpg (143.74 KB)

2022-4-27 21:54

20220427_215218.jpg

TOP

發新話題