發新話題
打印

110新竹高中

回復 7# ibvtys 的帖子

計算第 3 題
已知拋物線\(y^2=4x\),有兩直線\(L_1\)和\(L_2\)通過拋物線的焦點且互相垂直,若\(L_1\)與拋物線交於點\(A\)和點\(B\),\(L_2\)與拋物線交於點\(C\)和點\(D\),試求\(\overline{AB}+\overline{CD}\)的最小值。
[解答]
AB 和 CD 應是焦點弦,且是求 AB + CD 的最小值

設直線 AB 和 x 軸之夾角為 θ,直線 CD 和 x 軸之夾角為 π/2 + θ
由 AB = 4c / (sinθ)^2,CD = 4c / [sin(π/2 + θ)]^2 =  4c / (cosθ)^2
可求出 AB + CD 的最小值為 16

TOP

回復 7# ibvtys 的帖子

計算第 2 題
已知四面體\(ABCD\)中,\(\overline{AB}=5,\overline{BC}=6,\overline{AC}=7,\overline{DA}=9,\overline{DB}=\overline{DC}=8\),試求四面體\(ABCD\)的體積。
[解答]
參考 https://math.pro/db/viewthread.php?tid=1333&page=5#pid5334

TOP

回復 16# studentJ 的帖子

A(x_1,y_1)、B(x_2,y_2)
直線 AB:y = tanθ(x - c)
y^2 = 4cx

[tanθ(x - c)]^2 = 4cx
(tanθ)^2 * x^2 - [2c(tanθ)^2 + 4c]x + c^2 * (tanθ)^2 = 0
x_1 + x_2 = 2c + [4c / (tanθ)^2]

AF = x_1 + c,BF = x_2 + c
AB = x_1 + x_2 + 2c = 4c + [4c / (tanθ)^2] = 4c / (sinθ)^2

TOP

回復 36# math1 的帖子

拋物線上一點到焦點的距離 = 到準線的距離

TOP

回復 42# koeagle 的帖子

填充第 1 題
將12個大小寫的英文字母\(A,B,C,D,E,F,a,b,c,d,e,f\)打亂,兩兩任意配成6對,求大小寫同義(如:\(Aa\)為同義配對,\(AB\)、\(Ab\)不是同義配對)至少2對的方法數。
[解答]
六對同義:1 種
五對同義:0 種
四對同義,二組不同義:C(6,4) * 2 = 30 種
三對同義,三組不同義:C(6,3) * 8 = 160 種
二對同義,四組不同義:C(6,2) * 60 = 900 種

總共 1091 種

TOP

回復 46# anyway13 的帖子

小弟一開始也以為題意是一個大寫字母配一個小寫字母成一組,所以也用錯排做了一遍
後來看到題目的舉例才發現原來是任意配

TOP

回復 65# math1 的帖子

TOP

發新話題