發新話題
打印

107新竹高中(記憶版)

回復 5# Christina 的帖子

9612 正確

TOP

回復 12# z78569 的帖子

討論跟中間那格相鄰的那 4 格
(1) 四同:小計 972 種
(2) 三同一異:小計 3456 種
(3) 二同二同:小計 2112 種
(4) 二同二異:小計 3072 種
總計 9612 種

TOP

填充第 4 題
排課問題
一天 3 堂:小計 46 種
一天 4 堂:小計 39 種
一天 5 堂:小計 12 種
總計 97 種

TOP

回復 7# royan0837 的帖子

計算第 3 題第 (2) 小題
把\(x+y=\sqrt{2}\)視為新的\(x\)軸,\(y=x\)視為新的\(y\)軸
圓\({{x}^{2}}+{{y}^{2}}=2\),變為\({{x}^{2}}+{{\left( y+1 \right)}^{2}}=2\)
所求\(=\int_{-1}^{1}{\pi {{y}^{2}}dx=}\pi \int_{-1}^{1}{{{\left( \sqrt{2-{{x}^{2}}}-1 \right)}^{2}}dx=}\frac{10}{3}\pi -{{\pi }^{2}}\)

[ 本帖最後由 thepiano 於 2018-4-15 23:18 編輯 ]

TOP

回復 29# mojary 的帖子

先塗 D、E、F 是 4 * 3 * 3
後續討論時還要分,D、F 同色和 D、F 不同色

TOP

回復 34# Christina 的帖子

討論跟中間那格相鄰的那四格

(1) 四同
中間有 4 種填法,相臨四格有 3 種填法,角落四格各有 3 種填法
4 * 3 * 3^4 = 972 種

(2) 三同一異
中間有 4 種填法,相臨四格有 3 * 2 * 4 種填法,角落四格中有兩格是 3 種填法,有兩格是 2 種填法
4 * (3 * 2 * 4) * (3^2 * 2^2) = 3456 種

(3) 二同二同
(i) 二同相對,另兩同也相對
中間有 4 種填法,相臨四格有 C(3,2) * 2 種填法,角落四格各有 2 種填法
4 * [C(3,2) * 2] * 2^4 = 384 種

(ii) 二同均不相對
中間有 4 種填法,相臨四格有 C(3,2) * 4 種填法,角落四格中有兩格是 3 種填法,有兩格是 2 種填法
4 * [C(3,2) * 4] * (3^2 * 2^2) = 1728 種

小計 2112 種

(4) 二同二異:
(i) 二同相對
中間有 4 種填法,相臨四格有 3 * 2 * 2 種填法,角落四格各有 2 種填法
4 * (3 * 2 * 2) * 2^4 = 768 種

(ii) 二同不相對
中間有 4 種填法,相臨四格有 3 * 4 * 2 種填法,角落四格中有一格是 3 種填法,有三格是 2 種填法
4 * (3 * 4 * 2) * (3 * 2^3) = 2304 種

小計 3072 種

總計 972 + 3456 + 2112 + 3072 = 9612 種

TOP

回復 38# zidanesquall 的帖子

排課問題,小弟是這樣算的

(1) 一天三堂
與您相同做法

(2) 一天四堂
(a) 排四不排五
(最前面三節,最後面三節) = (2,1) 、(1,2)
2 * 3 + 3 * 3 = 15

(b) 排五不排四
同 (a),15 種

(c) 四五都不排
(最前面三節,最後面三節) = (2,2)
3 * 3 = 9 種

小計 39 種

(3) 一天五堂
(d) 排四不排五
(最前面三節,最後面三節) = (2,2)
2 * 3 = 6

(e) 排五不排四
同 (d),6 種

小計 12 種

總計 46 + 39 + 12 = 97 種

TOP

回復 43# jfy281117 的帖子

填充第9題
黎曼和
\(\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{a}_{n}}}{n}=\int_{0}^{2}{\left[ 1-{{\left( 1-x \right)}^{4}} \right]}dx=\frac{8}{5}\)

TOP

回復 48# z78569 的帖子

這兩題小弟算的答案,給您參考
填充
1. 19

計算
2. \(\left( 1 \right)\quad \frac{{{4}^{n+1}}-4}{9}\quad \left( 2 \right)\quad \frac{4}{9}\)

TOP

回復 64# Chen 的帖子

請教 Chen 老師,不知小弟哪裡觀念有誤呢?

TOP

發新話題