發新話題
打印

111高雄女中

回復 10# yuen1008 的帖子

第 1 題
令 b_n = √(1 + 24a_n) > 0
a_n = [(b_n)^2 - 1] / 24

代入原式整理可得
2b_(n+1) = b_n + 3
b_n = 3 + [(1/2)^(n - 2)]
剩下的就簡單了

TOP

回復 14# 新手老師 的帖子

第 6 題
所圍區域的邊界上方是 y = 2x + 15

要積分的函數是 y = 2x + 15 - x^2
它在 x = 1 時有最大值
故 x 從 1/2 積到 3/2 時,面積有最大值

[ 本帖最後由 thepiano 於 2022-4-19 20:41 編輯 ]

TOP

回復 19# q1214951 的帖子

第 13 題
2005 APMO Problem 5

TOP

回覆 25# yuen1008 的帖子

第 11 題
a = 11/2 時,x = -6
但 x^2 + 20x > 0
x > 0 或 x < -20

畫出 y = x^2 + 20x (其中 x > 0 或 x < -20) 的圖形
再畫出 y = 8x - 6a - 3,這是斜率為 8 的直線
可觀察出 -163/6 ≦ a < -1/2 時,兩圖形恰有一交點

[ 本帖最後由 thepiano 於 2022-5-16 13:20 編輯 ]

TOP

回覆 28# yuen1008 的帖子

第 4 題
畫 y = -(x^2 + 4x + 3)^2 和 y = k 的圖
看何時有兩交點,且兩交點分別在 y 軸的兩邊

TOP

回覆 31# yuen1008 的帖子

微分找極值點,就可大略畫出 y = -(x^2 + 4x + 3)^2 的圖形

您那樣討論也可以用兩根之積為負,求出 k < -9 這個答案

附件

20220519.jpg (45.34 KB)

2022-5-19 10:44

20220519.jpg

TOP

回覆 35# satsuki931000 的帖子

第 14 題
w = a,z = a + b,y = a + b + c,x = a + b + c + d,其中 a、b、c、d ≧ 0

5x + 4y + 3z + 6w = 18a + 12b + 9c + 5d = 2013
x + y + z + w = 4a + 3b + 2c + d

4(4a + 3b + 2c + d) = 18a + 12b + 9c + 5d - (2a + c + d) ≦ 2013
x + y + z + w = 4a + 3b + 2c + d ≦ 2013 / 4
等號成立於 a = c = d = 0,即 x = y = z = 2013 / 12,w = 0

5(4a + 3b + 2c + d) = 18a + 12b + 9c + 5d + (2a + 3b + c) ≧ 2013
x + y + z + w = 4a + 3b + 2c + d ≧ 2013 / 5
等號成立於 a = b = c = 0,即 x = 2013 / 5,y = z = w = 0

TOP

發新話題