發新話題
打印

113新竹女中

回覆 3# vln0106 的帖子

第 6 題
2≦1/x<4,1/4<x≦1/2
8≦1/x<16,1/16<x≦1/8
:
:

3≦1/y<9,1/9<x≦1/3
27≦1/y<81,1/81<x≦1/27
:
:

所求 = [(1/2 - 1/4) + (1/8 - 1/16) + ...][(1/3 - 1/9) + (1/27 - 1/81) + ...] = (1/3)(1/4) = 1/12

TOP

回覆 5# Superconan 的帖子

第 9 題
O(0,0)、P(1,t),-√3 ≦ t ≦ √3,Q(x,y),x ≧ 1
OP^2 * OQ^2 = (t^2 + 1)(x^2 + y^2) = 16

OP 和 OQ 斜率相同,可得 t = y/x

(y^2/x^2 + 1)(x^2 + y^2) = 16
x^4 + 2x^2y^2 + y^4 - 16x^2 = 0
(x^2 + 4x + y^2)(x^2 - 4x + y^2) = 0
[(x + 2)^2 + y^2 - 4][(x - 2)^2 + y^2 - 4] = 0
(x + 2)^2 + y^2 = 4 (不合,因 x ≧ 1) or (x - 2)^2 + y^2 = 4

所求為以 O'(2,0) 為圓心,半徑為 2 的圓周長 扣掉 弧AB(120度) 的長 = 4π * (2/3) = (8/3)π

TOP

回覆 11# mathchen 的帖子

第 8 題
分子和分母同除以 n^3
(1/n){1 + 1/(1 + 1/n)^3 + 1/(1 + 2/n)^3 + …… + 1/[1 + (2n - 1)/n]^3}
所求 = 1/(1 + x)^3,從 0 積到 2

TOP

回覆 3# vln0106 的帖子

第 10 題
以 A、B、C 代之
P(A) = 1/2、P(B) = 1/3、P(C) = 1/6

P(A→B→C) 表示按 A、B、C 之順序出現之機率,重複出現的略去
E(A→B→C) 表示按 A、B、C 之順序出現之期望次數

P(A→B→C) = (1/2) * [(1/3)/(1 - 1/2)] * 1 = 1/3
P(A→C→B) = (1/2) * [(1/6)/(1 - 1/2)] * 1 = 1/6
P(B→A→C) = (1/3) * [(1/2)/(1 - 1/3)] * 1 = 1/4
P(B→C→A) = (1/3) * [(1/6)/(1 - 1/3)] * 1 = 1/12
P(C→A→B) = (1/6) * [(1/2)/(1 - 1/6)] * 1 = 1/10
P(C→B→A) = (1/6) * [(1/3)/(1 - 1/6)] * 1 = 1/15

E(A→B→C) = 1 + [1/(1 - 1/2)] + [1/(1 - 1/2 - 1/3)] = 9
E(A→C→B) = 1 + [1/(1 - 1/2)] + [1/(1 - 1/2 - 1/6)] = 6
E(B→A→C) = 1 + [1/(1 - 1/3)] + [1/(1 - 1/3 - 1/2)] = 17/2
E(B→C→A) = 1 + [1/(1 - 1/3)] + [1/(1 - 1/3 - 1/6)] = 9/2
E(C→A→B) = 1 + [1/(1 - 1/6)] + [1/(1 - 1/6 - 1/2)] = 26/5
E(C→B→A) = 1 + [1/(1 - 1/6)] + [1/(1 - 1/6 - 1/3)] = 21/5

所求 = (1/3) * 9 + (1/6) * 6 + (1/4) * (17/2) + (1/12) * (9/2) + (1/10) * (26/5) + (1/15) * (21/5) = 73/10

TOP

回覆 20# Hawlee 的帖子

P(A→B→C) = (1/2) * [(1/3)/(1 - 1/2)] * 1 = 1/3
先抽到 A 的機率是 1/2,之後若再抽到 A 則略去,從 B 和 C 中,抽到 B 的機率是 [(1/3)/(1 - 1/2)] = 2/3,之後若再抽到 B 則略去,最後只剩 C,抽到的機率是 1

E(A→B→C) = 1 + [1/(1 - 1/2)] + [1/(1 - 1/2 - 1/3)] = 9
先抽 1 張,假設是 A,由於抽到 B 或 C 的機率是 1/2,所以接下來抽到 B 或 C 的期望次數是 2 次,假設先抽到 B,最後抽到 C 的機率是 1/6,期望次數是 6 次

所求就是上面六種情形的加權平均數

TOP

回覆 22# aizin 的帖子

第 5 題
先畫一個正三角形,在右下角截去一個邊長 a 的小正三角形,在左下角截去一個邊長 b 的小正三角形,會得到一個五邊形,這是走 5 次、順時針轉 60 度 4 次能回到出發點的走法

令第三次走的長度是 x,則 5 次走的長度分別是 x + b、a、x、b、x + a
x = 5,a = 1,b = 1
x = 4,a = 1 ~ 2,b = 1 ~ 2
:
:
x = 1,a = 1 ~ 5,b = 1 ~ 5

所求 = (1^2 + 2^2 + … + 5^2) / 6^5

TOP

發新話題