標題:
112高雄女中
[打印本頁]
作者:
草薙京
時間:
2023-5-19 15:04
標題:
112高雄女中
雄女泱泱大校,沒有公布試題?
請問一題:設三角形三邊長滿足 a^1.5 + b^1.5 = c^1.5,求證:90度 < 角C <108度。
作者:
thepiano
時間:
2023-5-22 16:11
標題:
回覆 1# 草薙京 的帖子
設 c > a ≧ b
1 > a/c ≧ b/c
(a/c)^2 + (b/c)^2 < (a/c)^1.5 + (b/c)^1.5 = 1
a^2 + b^2 < c^2
∠C > 90 度
.....
另一邊,有待努力
作者:
thepiano
時間:
2023-5-23 15:11
標題:
回覆 3# laylay 的帖子
感謝指正,的確有問題,有空再想想
作者:
Superman
時間:
2023-5-23 18:54
把108度改成 ArcCos[1 - 2^(1/3)] 是不等式最嚴格的情形,
這可以用微積分證明。
考慮\frac{x^{2}+y^{2}-1}{2xy}=k,k從-1變動到0。
作者:
Superman
時間:
2023-5-23 21:07
https://www.wolframalpha.com/inp ... x%29%2Fsqrt%28y%29+
作者:
laylay
時間:
2023-5-24 10:12
不妨設 a<=b<c , 令 a/b=r , c/b=s ,0<r<=1 ,由 a^1.5+b^1.5=c^1.5 知 r^1.5+1=s^1.5
cosC=(a^2+b^2-c^2)/(2ab)=(r^2+1-s^2)/(2r)=(r^2+1-(r^1.5+1)^(4/3))/(2r) 令為 f(r) , 令 t=r^0.5,0<t<=1
f`(r) = ((2r-(4/3)(r^1.5+1)^(1/3)*1.5r^0.5)(2r)-(r^2+1-(r^1.5+1)^(4/3))×2)/(2r)^2
= (t-1)[(1+t^2)(1+t)-(1+t+t^2)(1+t^3)^(1/3)]/(2r^2)
因為 [(1+t^2)(1+t)]^3-[(1+t+t^2)(1+t^3)^(1/3)]]^3=2t^6+3t^5+3t^4+2t^3>0 且 (t-1)<=0
所以 f`(r)<=0,f(r)在0<r<=1時為遞減函數,
故 cosC>=cosC的最小值=f(r)的最小值=f(1)=1-2^(1/3)>1-(2.197)^(1/3)=1-1.3
= -(2.2-1)/4> -(5^(1/2)-1)/4= -sin18度=cos108度
=> 角C<108度
歡迎光臨 Math Pro 數學補給站 (https://www.math.pro/db/)
論壇程式使用 Discuz! 6.1.0