補充類似問題
若\( \cases{a+b+c+d+e=8 \cr a^2+b^2+c^2+d^2+e^2=16} \),求\(e\)的最大值?
(高中數學競賽教程P195,93彰化女中,TRML2006個人賽都有這題)
h ttp://forum.nta.org.tw/oldphpbb2/viewtopic.php?t=17863 連結已失效
(99屏東女中,
https://math.pro/db/thread-976-1-1.html)
設\( a,b,c,d \in R \),\( a+b+c+d=6 \),\( a^2+b^2+c^2+d^2=12 \),則d的最大值為?
(96嘉義高工,h ttp://forum.nta.org.tw/examservice/showthread.php?t=23041 連結已失效)
設\( a,b,c,d \in R \),且\( \cases{a+b+c+d=4 \cr a^2+2b^2+3c^2+6d^2=10} \),若a的最大值為M,最小值為m,求數對\( (M,m) \)?
(97大里高中,h ttp://forum.nta.org.tw/examservice/showthread.php?t=48052 連結已失效)
\( \cases{a+b+c+d=3 \cr a^2+2b^2+3c^2+6d^2=5} \)求\(a\)的最大最小值?
(高中數學101 P355,高中數學101修訂版 P357)
已知\( \displaystyle \sum_{k=1}^{10}a_k=24 \)且\( \displaystyle \sum_{k=1}^{10}a_k^2=64 \);若\( a_1,a_2,a_3,...,a_{10} \)均為實數,則\( a_1 \)的最大值為?
(99師大附中,
https://math.pro/db/thread-935-1-3.html)