發新話題
打印

111中壢高中

引用:
原帖由 yuhui1026 於 2022-4-24 21:06 發表
填5.我是直接構圖...
很棒的想法~~

TOP

回復 8# thepiano 的帖子

謝謝鋼琴老師,想再請教計算三的(2)

TOP

回復 12# Christina 的帖子

計算第 3 題 (2)
R 是黃色區域

EHGF 繞 y 軸一圈的體積
= △OHG 繞 y 軸一圈的體積 - △OEF 繞 y 軸一圈的體積
= 2 個底面 3 高 3 的圓錐體積 - 2 個底面 1 高 1 的圓錐體積
= 2 * ( 9π * 3 - π * 1) * (1/3) = (52/3)π

△OHB 繞 y 軸一圈的體積
= 底面 6 高 6 的圓錐體積
=  36π * 6 * (1/3) = 72 π

R 繞 y 軸一圈的體積
= △OHB 繞 y 軸一圈的體積 - EHGF 繞 y 軸一圈的體積
= 72 π - (52/3)π
= (164/3)π

附件

20220425.jpg (39.18 KB)

2022-4-25 19:16

20220425.jpg

TOP

回復 13# thepiano 的帖子

謝謝鋼琴老師~~!

TOP

想請問4 6 10

TOP

回復 15# satsuki931000 的帖子

填充4,由內角和相等可知內角均為 120°
過頂點做與邊之平行線(沒有限定哪在哪裡做)

會將圖形線切成正三角形、平行四邊形,即可得



\( \overline{FA} = 4 +4 = 8\)
\( \overline{EF} = 2 \)
故所求
\( \overline{FA} + \overline{EF} = 10 \)
網頁方程式編輯 imatheq

TOP

引用:
原帖由 satsuki931000 於 2022-4-26 10:10 發表
想請問4 6 10
填4 寸絲先回了~
但都已經畫完了,還是放上去好了

附件

111中壢高中填4.jpg (146.28 KB)

2022-4-26 11:10

111中壢高中填4.jpg

TOP

回復 15# satsuki931000 的帖子

填充6. 我們可以知道此二平行面的距離為 \( \frac{6}{\sqrt{3}} \)

接著需要知道正八面體邊長和此平行面距離的比例

幾何作法:取M 為BC 中點,N 為DE 中,三角形ANM中 AM 邊上的高即為兩平行面的距離(修正筆誤AM邊上的高)

坐標:重新另做一個正八面體,頂點坐標為 \( (\pm a,0,0), (0,\pm a,0), (0,0,\pm a) \),其中 \( \sqrt{2} a \) 為正八面體的邊長
可計算得二平行面得距離為 \( \frac{2a}{\sqrt{3}} = \frac{\sqrt{2}}{\sqrt{3}} \times \sqrt{2} a\)

故可題,此題中邊長為 \( \frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{2}} = 3 \sqrt{2} \)

此正八面體的體積為 \( 2 \times \frac13 \times (3 \sqrt{2})^2 \times 3 = 36 \)

[ 本帖最後由 tsusy 於 2022-4-28 09:49 編輯 ]
網頁方程式編輯 imatheq

TOP

回復 15# satsuki931000 的帖子

填充 10. 沒有什麼好想法,暫時分三種狀態,用轉移矩陣硬算
狀態1:ABC 各1 人
狀態2:ABC 人數 2,1,0(未依序)
狀態3:ABC 人數 3,0,0(未依序)

認真算一下機率,轉移矩陣寫下來是
\( \begin{pmatrix}\frac{2}{8}&\frac{2}{8}&0\\ \:\:\frac{6}{8}&\frac{5}{8}&\frac{6}{8}\\ \:\:0&\frac{1}{8}&\frac{2}{8}\end{pmatrix} \)

\( \begin{pmatrix}\frac{2}{8}&\frac{2}{8}&0\\ \:\:\frac{6}{8}&\frac{5}{8}&\frac{6}{8}\\ \:\:0&\frac{1}{8}&\frac{2}{8}\end{pmatrix}^5\:\begin{pmatrix}1\\ \:\:0\\ \:\:0\end{pmatrix} = \begin{pmatrix}\frac{1823}{8192}\\ \frac{10923}{16384}\\ \frac{1815}{16384}\end{pmatrix}\)

故所求 = \( \frac{1815}{16384} \)
網頁方程式編輯 imatheq

TOP

回復 15# satsuki931000 的帖子

第 10 題
先算三人都到 A 的機率,再乘以 3

擲 5 次硬幣後
甲移動 6 或 9 個單位可到 A,乙移動 5 或 8 個單位可到 A,丙移動 7 或 10 個單位可到 A

甲移動 6 個單位:擲出 1 個正面、4 個反面,機率 5/32
甲移動 9 個單位:擲出 4 個正面、1 個反面,機率 5/32

乙移動 5 個單位:擲出 0 個正面、5 個反面,機率 1/32
乙移動 8 個單位:擲出 3 個正面、2 個反面,機率 10/32

丙移動 7 個單位:擲出 2 個正面、3 個反面,機率 10/32
丙移動 10 個單位:擲出 5 個正面、0 個反面,機率 1/32

三人都到 A 的情形
(甲,乙,丙)
(6,5,7):機率 (5/32)(1/32)(10/32) = 50/32768
(6,5,10):機率 (5/32)(1/32)(1/32) = 5/32768
(6,8,7):機率 (5/32)(10/32)(10/32) = 500/32768
(6,8,10):機率 (5/32)(10/32)(1/32) = 50/32768
(9,5,7):機率 (5/32)(1/32)(10/32) = 50/32768
(9,5,10):機率 (5/32)(1/32)(1/32) = 5/32768
(9,8,7):機率 (5/32)(10/32)(10/32) = 500/32768
(9,8,10):機率 (5/32)(10/32)(1/32) = 50/32768

總和 = 1210/32768

所求 = (1210/32768) * 3 = 1815/16384

TOP

發新話題