發新話題
打印

111臺南女中

計算1另解 抱歉右下角最後一個等式應為(1+110)*110/2

附件

20220418_204457.jpg (79.55 KB)

2022-4-18 20:47

20220418_204457.jpg

TOP

13和去年全國聯招相同,忘記加負號....
1.移項一下,得到\(\displaystyle |z-1|=1 , |z|=1\),去解\(z\)即可
以上兩題送分題居然寫錯....

TOP

6. 原式整理成\(\displaystyle  |z_3-z_1|=(4+4i)|z_3-z_2|\)
令\(\displaystyle A(z_1) ,B(z_2),C(z_3)\)
畫圖得到\(\displaystyle \Delta{ABC}, \overline{BC}=x,\overline{AC}=4\sqrt{2}x,\overline{AB}=5\)
\(\displaystyle C=45^{\circ}\),餘弦定理求出\(x=1 \Rightarrow \overline{AC}=4\sqrt{2}\)

TOP

引用:
原帖由 satsuki931000 於 2022-4-19 00:54 發表
6. 原式整理成\(\displaystyle  |z_3-z_1|=(4+4i)|z_3-z_2|\)
令\(\displaystyle A(z_1) ,B(z_2),C(z_3)\)
畫圖得到\(\displaystyle \Delta{ABC}, \overline{BC}=x,\overline{AC}=4\sqrt{2}x,\overline{AB}=5\)
\(\d ...
感謝提供
這題我是用湊的,因為也還蠻好湊的
原式:\(z_1-(4+4i)z_2+(3+4i)z_3=0\)

\(\left((4+4i)-(3+4i)\right)z_1-(4+4i)z_2+(3+4i)z_3=0\)

\((4+4i)(z_1-z_2)+(3+4i)(z_3-z_1)=0\)

\(|4+4i|·|z_1-z_2|=|3+4i|·|z_3-z_1|\)

所以\(\displaystyle |z_3-z_1|=\frac{4\sqrt{2}}{5}·|z_1-z_2|=4\sqrt{2}\)

TOP

填充5.

令 g(x)=(x+1)f(x)-x (11次多項式)
則 g(0)=g(1)....=g(10)=0
令  g(x)=ax(x-1)(x-2)...(x-10) , 由 g(-1)=1= -11!*a 得 a= -1/11!
g(11)=12f(11)-11=11!*a= -1 => f(11)=5/6

TOP

填充12.

所有的L會形成平面 (x+1)/1=(z+4)/3 , 即 平面 E : 3x-z=1
故所求 =d(p,E)=|-3+3-1|/ㄏ10=1/ㄏ10

TOP

請問一下第13、14題

TOP

14.設f(x)=(ax+b)(x+1),再由兩個判別式<=0
可得 (a-b)^2=0,2a+2b=1 => a=b=1/4 => f(4)=5(4a+b)=25/4
不過本題是填充題 x<=(x+1)^2/4<=(x^2+1)/2(柯西)若能快速看出,就能馬上寫出25/4 的答案

TOP

回復 17# r91 的帖子

第 13 題
要恰有 3 個交點
那兩直線 x + ay = 1 和 ax + y = 1 的交點 (1/(a + 1),1/(a + 1)) 要在圓 x^2 + y^2 = 1 上

TOP

填充13.

A(過(1,0)),B(過(0,1))對稱於x=y,依題意易知A再過(1/ㄏ2,1/ㄏ2)=>a=ㄏ2-1
或A再過(-1/ㄏ2,-1/ㄏ2)=>a=-ㄏ2-1

TOP

發新話題