回復 10# cherryhung 的帖子
計算4:
設\(a_1\),\(a_2\),\(\ldots\)是等差數列且\(a_1>1\),公差\(d>0\),證明:對所有自然數\(n\),\(\displaystyle log_{a_n}a_{n+1}>log_{a_{n+1}}a_{n+2}\)。
[解答]
考慮函數\(f\left( x \right)=\frac{\log \left( x+d \right)}{\log x},x>1\Rightarrow f'\left( x \right)<0,\forall x>1\), 故函數\(f\)在定義域為嚴格遞減,所以 \({{a}_{n}}<{{a}_{n+1}}\Rightarrow f\left( {{a}_{n}} \right)>f\left( {{a}_{n+1}} \right)\), 所求得證。
計算5:
設\(P\)為\(\Delta ABC\)內部一點,且是\(\Delta ABC\)的外心,證明:\(sin 2A \vec{PA}+sin 2B \vec{PB}+sin 2C \vec{PC}=\vec{0}\)。
[解答]
外心在三角形內部,此三角形為銳角三角形,
因為三角形面積比為\( PBC: PAC: PAB=\frac{1}{2}{{R}^{2}}\sin 2A:\frac{1}{2}{{R}^{2}}\sin 2B:\frac{1}{2}{{R}^{2}}\sin 2C=\sin 2A:\sin 2B:\sin 2C\),
故所求得證。