選擇題10.
令\( p=\root 3 \of {2+\sqrt{5}}+\root 3 \of {2-\sqrt{5}} \),則下列敘述何者為真:
(A) p是有理數 (B) p是大於1的實數 (C) p不是整數 (D) \( p=1 \) (E) 以上皆非
試求下列各題:
(1)求\( \root 3 \of {2+\sqrt{5}}+\root 3 \of {2-\sqrt{5}} \)之值。
(2)求使\( x=\root 3 \of {2+\sqrt{5}}+\root 3 \of {2-\sqrt{5}} \)之最低整係數方程式。
(96南港高工)
計算題6.
觀察\( \displaystyle C_0^n+C_1^n+...+C_n^n=(C_0^n+C_3^n+C_6^n+...)+(C_1^n+C_4^n+...)+(C_2^n+C_5^n+...) \)
令\( \displaystyle A=C_0^n+C_3^n+C_6^n+...+C_{3k}^{3k} \),\( \displaystyle B=C_1^{3k}+C_4^{3k}+...+C_{3k-2}^{3k} \),\( k \in N \)
(1)比較A與B的大小關係。
(2)計算A值。
\( \displaystyle C_0^n+C_3^n+C_6^n+...+C_{3m-3}^n+C_{3m}^n=\frac{1}{3}(2^n+2cos \frac{n \pi}{3}) \)
其中3m是不大於n的最大整數。
\( \displaystyle C_1^n+C_4^n+C_7^n+...+C_{3m+1}^n=\frac{1}{3}(2^n+2cos \frac{n-2}{3}\pi) \)
其中3m+1是不大於n的最大整數。
(神奇的複數: 如何利用複數解中學數學難題P23,P24)
101.6.22補充
已知\( n \in N \),且n為6的倍數,則\( C_0^n+C_3^n+C_6^n+...+C_n^n \)之值為
(101松山家商,
https://math.pro/db/thread-1425-1-1.html)
設\( \displaystyle (1+x)^{200}=\sum_{k=0}^{200}a_k x^k \),則\( \displaystyle \sum_{k=1}^{66}a_{3k}= \)?
(99安樂高中,
https://math.pro/db/thread-1008-1-3.html)
設 C(100,3k),k從0到33之和為S,請問S為幾位正整數?首位數為何?末位數為何?
http://forum.nta.org.tw/oldphpbb2/viewtopic.php?t=39008
[
本帖最後由 bugmens 於 2012-6-22 06:11 AM 編輯 ]