引用:
原帖由 r91 於 2022-4-20 09:15 發表
請問一下填充第2題
2.
\(a,b,c,x_1,y_1,z_1,x_2,y_2,z_2,x,y,z\)皆為實數,且\(\left(\Bigg\vert\;\matrix{a&b\cr x_1&y_1}\Bigg\vert\;,\Bigg\vert\;\matrix{b&c\cr y_1&z_1}\Bigg\vert\;,\Bigg\vert\;\matrix{c&a\cr z_1&x_1}\Bigg\vert\;\right)=(1,2,3)\),\(\left(\Bigg\vert\;\matrix{a&b\cr x_2&y_2}\Bigg\vert\;,\Bigg\vert\;\matrix{b&c\cr y_2&z_2}\Bigg\vert\;,\Bigg\vert\;\matrix{c&a\cr z_2&x_2}\Bigg\vert\;\right)=(4,5,6)\)若\(x,y,z\)滿足\(ax+by+cz=0\),求\(x^2+y^2+z^2-2x+4y-6z\)之最小值
。
[解答]
向量(2,3,1)與向量(a,b,c)垂直
向量(5,6,4)與向量(a,b,c)垂直
解出a:b:c=2: (-1): (-1)
等價改成滿足2x-y-z=0,求(x-1)²+(y+2)²+(z-3)²-14的最小值
即{|2+2-3 | /√(2²+1²+1²) }² -14=1/6-14 = - 83/6