回復 1# natureling 的帖子
12.
在整數列\(\displaystyle \left[\frac{1^2}{103}\right],\left[\frac{2^2}{103}\right],\left[\frac{3^2}{103}\right],\ldots,\left[\frac{k^2}{103}\right],\ldots,\left[\frac{103^2}{103}\right]\)中,共有 個互不相等的整數(其中符號[]為高斯符號)。
[解答]
做一下填 12.,
\( \left[\frac{52^{2}}{103}\right]=26+\left[\frac{26}{103}\right] \),
\( 53^{2}=52^{2}+103+2, \left[\frac{53^{2}}{103}\right]=27+\left[\frac{26+2}{103}\right] \)
\( 54^{2}=53^{2}+103+4, \left[\frac{54^{2}}{103}\right]=28+\left[\frac{26+2+4}{103}\right] \)
\( 55^{2}=54^{2}+103+6, \left[\frac{55^{2}}{103}\right]=29+\left[\frac{26+2+4+6}{103}\right] \)
...
\( 103^{2}=102^{2}+103+102 , \left[\frac{103^{2}}{103}\right]=77+\left[\frac{26+2+4+6+\ldots+102}{103}\right] \)
所求 \( =103+1-\left[\frac{26+2+4+6+\ldots+102}{103}\right]=78 \)。
說明如下:上面的算式計算有幾個相鄰項的差為 2,這些相鄰的差為 2,就產生某個正整數被跳過而沒有出現。
\( (k+1)^2 - k^2 = 2k+1 \),當 \( k \leq 52 \),分子增加不到 103,相鄰項的差至多為 1
而 \( k \geq 53 \) 的情況,我們將第 k 項寫成 \( \left[\frac{k^{2}}{103}\right]=(k-26)+\left[\frac{}{103}\right] \)
每次至少增加 1,而當後方的 [ ] 也增加 1 時,就會增加 2。
而後方的 [ ] 如同 \( k \leq 52 \) 之情況,不會產生增加 2,不是加 0 就是加 1
故計算其在 \( k =103 \) 之值為 26,便知這些相鄰項的差有 26 個為 2。
因此從 0~103 的整數中,有 26 個被跳過,所求 = \( 103 + 1 -26 =78 \)。