一、填充題
6.
設\(a,b\)皆為實數,求當\((a-41b-33)^2+(a-42b-34)^2+(a-40b-35)^2+(a-39b-32)^2+(a-38b-31)^2\)為最小值時的\((a,b)=\)?
設\( \displaystyle f(a,b)=(61-a-28b)^2+(62-a-29b)^2+(60-a-30b)^2+(58-a-31b)^2+(59-a-32b)^2 \),當\( f(a,b) \)有最小值時,求此時數對\( (a,b)= \)?
(102文華高中,連結有四種方法,
https://math.pro/db/thread-1579-1-1.html)
相關問題,
https://math.pro/db/viewthread.php?tid=680&page=3#pid7957
7.
有一球體地球儀,半徑為 20 公分,已知\(A,B\)兩點的座標分別為\(0^{\circ}N,15^{\circ}E\)與\(45^{\circ}S,120^{\circ}W\),則\(A,B\)兩地的球面最短距離為何?
半徑\(R\)的球面,\(A\)點在東經120度、南緯45度,\(B\)點在西經60度,北緯30度,\(A,B\)兩點在球面上最短距離
。
(99建國中學市內甄選,
https://math.pro/db/thread-1124-1-1.html)
9.
四面體\(ABCD\)中,底面\(\Delta BCD\)為邊長6的正三角形,而\(\overline{AB}=\overline{AC}=\overline{AD}=5\)。求直線\(AB\)與直線\(CD\)的距離。
\(O-ABC\)為一四面體,\(\Delta ABC\)是邊長為4之正三角形,\(\overline{OA}=\overline{OB}=\overline{OC}=a\),兩歪斜稜\(\overline{OA}\)與\(\overline{BC}\)間的距離是\(\sqrt{3}\),求\(a\)的值。
(98曉明女中,
https://math.pro/db/thread-931-1-1.html)
10.
一袋中有 5 紅球、6 白球,自袋中每次取出一球,取出不放回,取完為止。若袋中每一球被取中的機會均等。計算在取球過程中已取出的紅球個數不大於已取出的白球個數的機率。
一路領先相關題目,
https://math.pro/db/viewthread.php?tid=1710&page=2#pid11780
二、填充題
1.
已知數列中\(\langle\;a_n\rangle\;\)中,\(a_1=1\),\(a_2=2\),\(a_{n+2}=2a_{n+1}+a_n(n\in N)\),則\(\displaystyle \sum_{k=1}^{2023}(a_{k+1}^2-a_k\cdot a_{k+2})=\)?
5.
\(\displaystyle \lim_{n\to \infty}\frac{ln \left(\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)\left(1+\frac{3}{n}\right)\ldots\left(1+\frac{n}{n}\right)\right)}{n}=\)?
我的教甄準備之路 黎曼和和夾擠定理,
https://math.pro/db/viewthread.php?tid=661&page=3#pid23615
求\(\displaystyle \lim_{n\to \infty}\frac{1}{n}\left[(n+1)(n+2)\ldots (n+n)\right]^{\frac{1}{n}}\)。
(104羅東高中,
https://math.pro/db/viewthread.php?tid=2333&page=3#pid23673)
6.
已知\(y=x^3+kx^2-1\)恰有三相異切線過\((0,0)\),求\(k\)的範圍。
類似問題,
https://math.pro/db/viewthread.php?tid=1644&page=2#pid8567
設過原點\((0,0)\)有三條相異直線與\(f(x)=x^3+kx^2+1\)相切,則實數\(k\)值的範圍為
。
(100楊梅高中,連結有解答
https://math.pro/db/viewthread.php?tid=1162&page=1#pid4118)
三、計算與證明題
3.
已知兩數列\(\langle\;a_n\rangle\;,\langle\;b_n\rangle\;\),當\(n\in N\)時恆存在下列關係:\(\cases{a_n=3a_{n-1}+5b_{n-1}\cr b_n=a_{n-1}+7b_{n-1}}\),且\(a_0=2,b_0=1\),求一般項\(a_n\)。
我的教甄準備之路 求數列一般項,
https://math.pro/db/viewthread.php?tid=661&page=3#pid9507
設有二個首項皆為1的數列\( \langle\; a_n \rangle\; \)、\( \langle\; b_n \rangle\; \),且對於所有的自然數n,\( \displaystyle \cases{a_{n+1}=a_n-2 b_n \cr b_{n+1}=a_n+4 b_n} \)恆成立,則\( a_n= \)?
(99安樂高中,
https://math.pro/db/viewthread.php?tid=1008&page=1#pid2451)