3.
設\(a\)、\(b\)、\(c\)為正實數且滿足\(a+b^2+c^3=11\),求\(abc\)的最大值。
[解答]
算幾不等式
原式: \(\displaystyle \frac{\frac{a}{6}\cdot 6+\frac{b^2}{3}\cdot3 +\frac{c^3}{2}\cdot 2}{11} \geq \sqrt[11]{\frac{(abc)^6}{2^8\cdot 3^9}}\)
可得\(\displaystyle abc\leq 6 \sqrt[6]{108}\)
等號成立在\(a=6 , b=\sqrt{3}, c=\sqrt[3]{2}\)
計算二
票箱中有甲、乙兩人的選票分別為\(m\)張和\(n\)張且\(m>n\)。令\(P_{m,n}\)表示開票的過程中甲的選票會一路領先乙的選票的機率,回答以下的問題:
(1)計算\(P_{m,1}\)和\(P_{m,2}\)
(2)證明\(\displaystyle P_{m,n}=\frac{m}{m+n}P_{m-1,n}+\frac{n}{m+n}P_{m,n-1}\)
(3)先猜測\(P_{m,n}\)的答案,再利用(2)使用歸納法證明你的猜測。
[解答]
有點導果為因 不知道這樣寫可不可以
甲m票,乙n票,且甲一路領先乙(不能平手)的方法數為\(\displaystyle C^{m+n-1}_{m-1}-C^{m+n-1}_m\)
所以易知
(1)\(\displaystyle P_{m,1}=\frac{m-1}{m+1},P_{m,2}=\frac{m-2}{m+2}\)
(2)直接把該結論砸下去遞迴式驗證
(3)數學歸納法
當\(n=1\)的時候,成立
設\(n=k\)的時候,\(\displaystyle P_{m,n}=\frac{m-k}{m+k}\)成立
則當\(n=k+1\)時
\(\displaystyle P_{m.k+1}=\frac{m}{m+k-1}\cdot \frac{m-1-k}{m-1+k}+\frac{k+1}{m+k+1}\cdot \frac{m-k+1}{m+k-1}=\frac{m-k-1}{m+k+1}\)
想請問第2題有沒有組合解釋的方法