回覆 5# Superconan 的帖子
第 9 題
O(0,0)、P(1,t),-√3 ≦ t ≦ √3,Q(x,y),x ≧ 1
OP^2 * OQ^2 = (t^2 + 1)(x^2 + y^2) = 16
OP 和 OQ 斜率相同,可得 t = y/x
(y^2/x^2 + 1)(x^2 + y^2) = 16
x^4 + 2x^2y^2 + y^4 - 16x^2 = 0
(x^2 + 4x + y^2)(x^2 - 4x + y^2) = 0
[(x + 2)^2 + y^2 - 4][(x - 2)^2 + y^2 - 4] = 0
(x + 2)^2 + y^2 = 4 (不合,因 x ≧ 1) or (x - 2)^2 + y^2 = 4
所求為以 O'(2,0) 為圓心,半徑為 2 的圓周長 扣掉 弧AB(120度) 的長 = 4π * (2/3) = (8/3)π