不妨設 a<=b<c , 令 a/b=r , c/b=s ,0<r<=1 ,由 a^1.5+b^1.5=c^1.5 知 r^1.5+1=s^1.5
cosC=(a^2+b^2-c^2)/(2ab)=(r^2+1-s^2)/(2r)=(r^2+1-(r^1.5+1)^(4/3))/(2r) 令為 f(r) , 令 t=r^0.5,0<t<=1
f`(r) = ((2r-(4/3)(r^1.5+1)^(1/3)*1.5r^0.5)(2r)-(r^2+1-(r^1.5+1)^(4/3))×2)/(2r)^2
= (t-1)[(1+t^2)(1+t)-(1+t+t^2)(1+t^3)^(1/3)]/(2r^2)
因為 [(1+t^2)(1+t)]^3-[(1+t+t^2)(1+t^3)^(1/3)]]^3=2t^6+3t^5+3t^4+2t^3>0 且 (t-1)<=0
所以 f`(r)<=0,f(r)在0<r<=1時為遞減函數,
故 cosC>=cosC的最小值=f(r)的最小值=f(1)=1-2^(1/3)>1-(2.197)^(1/3)=1-1.3
= -(2.2-1)/4> -(5^(1/2)-1)/4= -sin18度=cos108度
=> 角C<108度