依往例雄女不曾公布題目,趁記憶猶新來跟大家分享。
※共14題計算證明題,1~12每題7分,13、14各8分。
1.數列\(<a_n> \)滿足\(a_1=1, a_{n+1}=\frac{1}{16} (1+4a_n +\sqrt(1+24a_n)) , \forall n \in \mathbb{N} \),試求\( a_n\)的一般式。
2.設\( x_1, x_2, x_3, ..., x_n\)均為正實數,且\( \sum\limits_{k = 1}^{n}{x_k}=48, \sum\limits_{k = 1}^{n}{x_k^2}=36, \sum\limits_{k = 1}^{n}{x_k^3}=27 \),求\( n \)。
3.方程式\( x^8+ax^4+1=0\)有四實根四虛根,且四個實根成等差數列,求\( a \)。
4.方程式\( (x^2+4x+3)^2 + k=0 \) 有一正根一負根及二虛根,試求\( k \)的範圍。
5.\[ \lim\limits_{m \to \infty} \lim\limits_{n \to \infty} [\frac{1+ \root n \of {1^n + 2^n} + \root n \of {2^n + 3^n} + \dots +\root n \of {(m-1)^n + m^n} }{m^2}] = ?\]
6.請問函數\( y=x^2\)和 \( y= 2x + 15 \)所圍的區域在 \( x=t \)和 \( x=t+1 \)間面積的最大值為何?
7.設\( f(a) = \lim\limits_{x \to a} \frac{1}{x-a} \int_a^x (2t-1)(t-2)^2 \mathrm{d} t \),令 \( f(a) \)的極大值 \( M \)和極小值 \( m \),求\( (M, m) \)。
8.拋物線\( y=x^2+1 \)和\( y=-(x-1)^2 \)的兩條公切線和兩圖形切於4個相異點,請問此4點所圍成的四邊形面積為何?
9.\( \Delta ABC\)的重心為\( G \),過\( G \)作一直線分別交\( AB \)、\( AC \)於\( P, Q \),請證明\( \Delta APQ \)的面積至少為\( \Delta ABC \)的九分之四。
10.(題目的數據太複雜,算完就忘了XD,以下僅提供大意)
令\( B \)是一個可對角化的\( 3 \times 3 \)矩陣且eigenvalues分別為\( 1, 1, 2 \),令\( B^n \)的9個元素分別為\( a_1, a_2, a_3, \dots, a_9 \),其中\( a_5 \)在正中間。計算
\[ \lim\limits_{n \to \infty } \frac{a_1 + a_2 + a_3 + \dots + a_9}{a_5} =? \]
11.\( log_2 (x^2 + 20x) - log_2 (4x-3a-\frac{3}{2}) = 1 \)的\( x \)有唯一解,求\( a \)的範圍。
12.設\( cos\theta = \frac{1}{3} \),令\( a_n = 3^n cos n\theta\),證明 \( \forall n \in \mathbb{N} \),\( a_n \)必為整數且不為3的倍數。
13.在 \( \Delta ABC \) 的\( AB, AC \)上各取一點 \( m, n \),使得\( MB=BC=CN \)。令\( \Delta ABC \)的外接圓半徑、內切圓半徑分別為\( R, r \),試求\( \frac{MN}{BC} \)。
14.(考場中沒想法所以沒寫,數字不太確定)
設\( x \geq y \geq z \geq w \geq 0 \),\( 5x+4y+3z+6w=2013 \),求\( x+y+z+w \)的最大值及最小值。
如有誤植還請各位網友不吝指正。