三.計算1.
\(\Delta ABC\)中,已知\(P\)為\(\Delta ABC\)內一點,\(\overline{AB}=35,\overline{AC}=56,\angle BAC=60^{\circ},\overline{AP}=15,\overline{BP}=25\),試求\(\overline{CP}\)的值。
[解答]
cosPAB=(3^2+7^2-5^2)/(2*3*7)=11/14
cosPAC=cos(60度 -PAB)=cos60度cosPAB+sin60度sinPAB=1/2*11/14+ㄏ3/2*5ㄏ3/14=13/14
CP=ㄏ(56^2+15^2-2*56*15*cosPAC)=ㄏ1801
二.填充1.
去掉含有比7大的質因數之正整數,剩下的正整數由小到大排成一數列\(\langle\;b_k\rangle\;=\langle\;1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,21,24,25,\ldots \rangle\;\),則\(\displaystyle \sum_{k=1}^{\infty}\frac{1}{b_k}=\) 。
[解答]
所求=(1+1/2+1/2^2+...)(1+1/3+1/3^2+..)(1+1/5+...)(1+1/7+...)
=1/(1-1/2)*1/(1-1/3)*1/(1-1/5)*1/(1-1/7)=2*3/2*5/4*7/6=35/8